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Phase separation of crystal surfaces: A lattice gas approach
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We consider both equilibrium and kinetic aspects of the phase separation (“thermal faceting”)
of thermodynamically unstable crystal surfaces into a hill-valley structure. The model we study
is an Ising lattice gas for a simple cubic crystal with nearest-neighbor attractive interactions and
weak next-nearest-neighbor repulsive interactions. It is likely applicable to alkali halides with the
sodium chloride structure. Emphasis is placed on the fact that the equilibrium crystal shape can
be interpreted as a phase diagram and that the details of its structure tell us into which surface
orientations an unstable surface will decompose. We find that, depending on the temperature and
growth conditions, a number of interesting behaviors are expected. For a crystal in equilibrium with
its vapor, these include a low temperature regime with logarithmically slow separation into three
symmetrically equivalent facets and a higher temperature regime where separation proceeds as a
power law in time into an entire one-parameter family of surface orientations. For a crystal slightly
out of equilibrium with its vapor (slow crystal growth or etching), power-law growth should be the
rule at late enough times. However, in the low temperature regime, the rate of separation rapidly
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decreases as the chemical potential difference between crystal and vapor phases goes to zero.

PACS number(s): 64.60.Cn, 68.35.Rh, 68.35.Bs, 64.60.Ht

I. INTRODUCTION

The decomposition (or “faceting”) of a surface into
pieces of surfaces of other orientations is a problem
of long-standing interest in the materials science and
physics communities. It can occur in a variety of cir-
cumstances, including when a crystal is being grown or
etched [1], when deposition is occurring through such
processes as molecular beam epitaxy [2,3], when other
materials are adsorbed onto the surface [4], or when an
electric current is applied across the sample [5,6]. How-
ever, such external perturbations are not always neces-
sary to cause this decomposition: If the surface tension is
sufficiently anisotropic, some surface orientations will be
thermodynamically unstable [7]. Then, a surface that
is initially prepared in such an orientation will spon-
taneously decompose into a faceted structure, evolving
towards a final equilibrium configuration consisting of
large facets of stable orientations. This decomposition
has been variously referred to as “equilibrium faceting,”
“thermal faceting,” “thermal etching,” “Herring recon-
struction,” or “hill-valley reconstruction” [1,7-9].

Recently, there has been a resurgence of interest in this
process in both the experimental [10-12] and the theoret-
ical physics communities [13-16]. In the theoretical com-
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munity, the close analogy to phase separation of binary
liquids or alloys has been pursued. Hence the process has
been dubbed “phase separation” or “spinodal decompo-
sition” of crystal surfaces [14,15]. (The terms “faceting,”
“phase separation,” “decomposition,” and “coarsening”
each have their drawbacks in describing this process in
all its various manifestations but, lacking better termi-
nology, we will use all these terms and use them more or
less interchangeably.)

The process, which is illustrated in Fig. 1, proceeds as
follows. The surface, initially prepared in an unstable
orientation, first decomposes into small pieces (“facets”)
of stable surface orientations, in spite of the fact that
this increases the total surface area. The faceted surface
then coarsens over time in order to minimize the energy
associated with the edges between the different surface
orientations. The dynamical process by which the size of
the facets grows over time is indeed closely analogous to
the phase separation of a binary liquid or alloy, and re-
cent theoretical work has attempted to elucidate the anal-
ogy and to investigate the dynamics associated with such
separation [13-16]. Much earlier work along these lines
was performed by Mullins [9] and he predicted power-law
growth of the facet size L with time ¢t: L(t) ~ t™ with
n =1/4, 1/3, or 1/2 for the mass-transfer mechanisms of
surface diffusion, volume diffusion, or evaporation con-
densation, respectively. However, the experimental situ-
ation has remained murky. Generally, it has been found
that such faceting occurs only very slowly (e.g., n = 0.1)
if at all under near-equilibrium conditions (see the dis-
cussion in [16]) and indeed some have argued that such
faceting is not even a thermodynamic phenomenon, but
occurs only under driven conditions of crystal growth or
etching [1]. Nonetheless, it is known theoretically that
such faceting should in principle occur in equilibrium if
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the surface tension is sufficiently anisotropic and some
of the experimental observations do support this [8,17].
Thus we are led to conclude that one should seek a dy-
namical explanation to understand why so little faceting
is seen [18].

Two of the recent studies of the dynamics have used
solid-on-solid approximations of an Ising lattice gas on
a cubic lattice with interactions appropriate for alkali

FIG. 1. Decomposition of a surface in the [111] RSOS
model for the Hamiltonian of Eq. (1) at T < Tcr. Shown
is a [111] surface that has been quenched from infinite tem-
perature to T' = 3J; at times (a) ¢t = 0, (b) ¢ = 100, and (c)
t = 10000 (in MC steps per plaquette) following the quench.

halide materials such as sodium chloride (NaCl) [19,20].
Shore, Holzer, and Sethna [13] considered the special
case of a [111] surface and argued that the coarsening
of the surface should be only logarithmic with time (at
long times) for quenches to all temperatures T at which
the [111] surface is unstable. This claim was supported
by their Monte Carlo simulations. Vlachos, Schmidt,
and Aris [16] performed Monte Carlo simulations for the
coarsening of [hk0] surfaces, concentrating in particular
on a [210] surface. Although they draw no firm con-
clusions about the asymptotic growth laws, we believe
that the results presented there—of anomalously low ex-
ponents that decrease with decreasing temperature—are
compatible with (although certainly not proof of) loga-
rithmic growth at long times [13,21].

The approach of Stewart and Goldenfeld [14] and Liu
and Metiu [15] has been along somewhat different lines,
closer in spirit to the original work of Mullins. They have
looked at the problem in the continuum limit, which is
generally claimed to be valid when one is interested in
behavior at long times and on long length scales. In this
limit, the driving force for the initial breakup of the sur-
face into facets is provided by a sufficiently anisotropic
surface tension. Also included in the free energy func-
tional is a term that suppresses rapid changes in the sur-
face normal [15]. Such a term has two effects. First
it rounds off the edges and corners on the surface, thus
preventing the occurrence of singularities, which would
lead to divergences in the Langevin equations. Second,
it reproduces, in a macroscopic sense, the energy costs
associated with edges and corners, thus providing the
driving force for the coarsening of the surface structure.
For this model, Liu and Metiu concluded that coars-
ening proceeds logarithmically for quasi-one-dimensional
ordering. Simulations of the resulting Langevin equation
for a two-dimensional surface gave L(t) ~ t" with n ~
0.13 and 0.23 for surface diffusion and for evaporation-
condensation mechanisms, respectively. These results
were noted to be in fairly good agreement with sim-
ple power-counting arguments on the Langevin equation,
which suggest n = 1/6 and 1/4 for the two different mech-
anisms.

Although continuum approaches are a powerful tool
and currently enjoy great favor in the study of kinetics of
growth, they suffer from at least two major limitations
that make it useful to also consider microscopic (e.g.,
lattice gas) models. The first is that, since they deal with
the system on a coarse-grained level, one generally needs
to assume some form for the input parameters, in this
case the orientation dependence of the surface tension.
Thus microscopic models are useful to give us guidance
on what form to choose for the surface tension. Indeed, in
Sec. ITII B we will find that the form of the surface tension
that arises in one such microscopic model, and may occur
quite generally, is considerably different from that which
one might have expected from naive considerations.

The second limitation is that such models, at least as
currently formulated, appear to be unable to properly
model aspects of the problem where the atomic discrete-
ness is fundamental and cannot be ignored. This leads to
the conflicting predictions discussed above (logarithmic
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vs power-law growth) between the microscopic and the
continuum approaches for the coarsening of an unstable
[111] surface of NaCl.

The lattice gas models, of course, have their own limi-
tations (e.g., the neglect of elastic effects [18]), but at this
point a fairly complete picture of the equilibrium and ki-
netic aspects of the faceting process within a microscopic
model would be useful in advancing the understanding
of the faceting process in the real world. In this paper,
we will try to present such a unified picture of faceting
within the context of the Ising lattice gas model for NaCl.
The picture combines and generalizes some of our earlier
work on the faceting of a [111] surface [13] and some more
recent results concerning the phase diagram of the six-
vertex model [22]. We also include a discussion of how
the kinetics of the faceting process will be altered for the
case of a driven interface, that is, one in which the crystal
is being slowly grown or etched.

The outline of the paper is as follows. In Sec. II we in-
troduce the Ising lattice gas model that we will study,
discuss the general features of its equilibrium crystal
shape (ECS), and explain how the ECS tells us which
surface orientations are unstable and into what surfaces
such an unstable orientation will decompose. In Sec. III
we consider in detail the equilibrium and the kinetic as-
pects of the phase separation in two different temperature
regimes. In Sec. IV we discuss how the kinetics is altered
in the case when the crystal is no longer in equilibrium
with its vapor (growth or etching). Finally, in Sec. V we
present a summary of our conclusions.

II. EQUILIBRIUM CRYSTAL SHAPE

The problem of determining the equilibrium shape of
a crystal by minimizing its total surface free energy sub-
ject to a constraint of fixed volume has been considered
for over a century [23]. The major result is the cele-
brated Wulff construction by which one determines the
ECS given the surface free energy (surface tension) as a
function of the surface orientation.

Only much more recently, however, has the ECS of
some simple microscopic models for crystals been consid-
ered [19,24-27]. Of particular interest to us is the Ising
lattice gas on a simple cubic lattice with nearest-neighbor
attractive interactions and next-nearest-neighbor repul-
sive interactions, first studied by Rottman and Wortis
[19]. The Hamiltonian is

H= —le sis; + J2 Z $;85 + %Z Si (1)

NN NNN

where the s; take on the values +1 and —1. In the lat-
tice gas context, +1 is taken to represent an atom oc-
cupying the site and —1 is taken to represent an empty
site. The first sum is over all pairs of nearest neighbors
(NNs) while the second is over all pairs of next nearest
neighbors (NNNs). We have chosen our sign convention
so that both J; and J are positive when the NN bonds
are attractive and the NNN bonds are repulsive. We
are interested in the case where J;/Jz > 4, in which case
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the ground state is (using spin language) “ferromagnetic”
[13].

In many instances, it will be useful to consider an in-
terface between occupied and unoccupied sites (i.e., be-
tween solid and gas) in the [111] restricted-solid-on-solid
(RSOS) approximation [28]. This approximation can be
obtained by viewing the interface from the [111] direc-
tion and requiring that none of the interface be hidden
from view by other parts of the interface (see Fig. 1). It
is equivalent to taking the limit Jy/J> — oo with T'/J,
fixed. Configurations in this model can also be viewed
as tilings of the plane by 60° rhombi of three different
orientations. In this representation, the energetics are
reproduced by assigning an energy of 2J5 to each border
between unlike rhombi and the coarsening process in-
volves the phase separation of the three types of rhombi.

Finally, Ay = ps — p,, represents a difference in chemi-
cal potential between solid and vapor. (In spin language
it would be a magnetic field.) For the remainder of this
paper, with the exception of Sec. IV, we will be consid-
ering the case in which the solid and the vapor are in
equilibrium (Ap = 0).

The model of Eq. (1) and its RSOS approximation were
proposed [20,24] to represent materials such as sodium
chloride (NaCl), where the ions of different species (and
opposite charge) would have an attractive interaction
while those of the same species would repel one another
[29]. The ECS for this model is show in Fig. 2. It
was found [19] that the ECS remains strictly cubical,
with (macroscopically) sharp edges and corners up to the
corner-rounding transition at a temperature T' = Tcg, at
which point the crystal first rounds at the corners. For
the RSOS model, Tcr can be calculated exactly [20,13]
and is given by [30]

_ —4J,
"~ In[1/3 — 5/(9al/3) + al/3]

TCR ~ 7.1124...J2 3 (2)

where o = § (3 ++/23/3). As the temperature is further
increased, the rounded region spreads out along the edges
until the edge-rounding temperature Tggr, at which point
the entire edge becomes rounded. The smooth {100}

—
4/
T<Trg Ter<T < Ty
Tpr<T<T T>T,

FIG. 2. Qualitative thermal evolution of the equilibrium
crystal shape (ECS) for the model specified by the Hamilto-
nian of Eq. (1), after Ref. [19].
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facets still remain, however, up to the roughening tem-
perature Tg [31]. Finally, above Tg, the entire crystal
shape is rounded.

We make two further observations about these inter-
facial phase transitions. The first is that when J; = 0
or is attractive, then Tcr = Tgr = 0. Therefore the
corner- and edge-rounding transitions are the result of
the competing attractive and repulsive interactions. The
second is that within the [111] RSOS model, Tgr and
Tr are infinite. This is a result of the fact that setting
Ji — oo suppresses the fluctuations that are responsi-
ble for edge rounding and the roughening of the facets.
Thus the usefulness of the RSOS approximation is re-
stricted to temperatures T' < Tgr. It is most reliable for
surface orientations close to [111].

Experimentally, in NaCl, the corner-rounding transi-
tion is found to occur at a temperature Tcr =~ 920 K
[17,20,24,32]. The sharp cubical shape and the shape
with facets but no sharp corners or edges have both been
observed experimentally [17]. The intermediate shape
with sharp edges but rounding at the corners was also
seen on some crystals. However, it is likely that these
crystals were not sufficiently equilibrated, so one would
have to say that there is, as of yet, no experimental con-
firmation of this intermediate shape and thus of the claim
that the corner- and edge-rounding temperatures are dis-
tinct (see [17] and the discussion in [24]).

It is a theorem due to Herring [7] that those surface
orientations that do not appear on the ECS are thermo-
dynamically unstable (and will thus break up into pieces
of surface of stable orientations). If we represent each sur-
face orientation by a unit vector normal to that surface,
then we can use a unit sphere to represent the various
surface orientations. For the model specified by Eq. (1),
Fig. 3 shows an eighth of such a unit sphere, with shading

[010] [010] ‘

[100] [001] [100]@ [001]

T < Tpg T =Ty

[010] [010]

[1001@ [001] [100]‘ [001]

Tep<T <Tgg T>Tp

FIG. 3. Stable surface orientations for the model specified
by the Hamiltonian of Eq. (1) in various temperature regimes.
This figure shows an eighth of a sphere, representing surface
orientations by the unit vector normal to the surface. The
shaded regions on the figure show those surface orientations
that appear on the ECS of Fig. 2. All surface orientations
in the unshaded regions are thermodynamically unstable [7]
and surfaces prepared in such orientations will decompose into
some combination of stable surfaces.
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on the sphere used to indicate those surface orientations
that are stable in various temperature regimes. Since
only the {100} facet orientations appear on the crystal
shape (Fig. 2) for T < Tcg, they are the only stable
surface orientations in this temperature regime. At Tcr,
the [111] surface orientation (which is at the center of
our diagrams in Fig. 3) and all those orientations on the
lines connecting it to the three nearest facet orientations
become (marginally) stable. As the temperature is raised
further, more and more surface orientations become sta-
ble. However, it is not until the temperature reaches Tgr
that all surface orientations appear on the ECS and are
thus stable.

Herring’s theorem is actually a specific consequence of
a more general fact: The ECS is essentially a phase dia-
gram for the surface orientations [33,24,22]. More pre-
cisely, the height of the ECS above a reference plane
F(h,v), as a function of the two in-plane coordinates
(h,v), can also be considered as a free energy as a func-
tion of two “fields” (h,v) [34], which couple to the sur-
face orientation. [F'(h,v) is related to the free energy
as a function of surface orientation (the surface tension)
by a Legendre transformation [33]. Note that here both
F(h,v) and the surface tension have been “projected” in
the sense that they are free energies per unit area of the
aforementioned reference plane.)

Because of this mapping between the ECS and a free
energy surface, we can transfer all our terminology and
knowledge about phase diagrams over to the realm of
equilibrium crystal shapes! For example, sharp edges
in the ECS are places where F(h,v) has a discontinu-
ity in the first derivatives, i.e., first-order phase transi-
tions, whereas boundaries where a facet smoothly joins
the rough regions of the crystal are places where the
first derivatives of F(h,v) are continuous but higher-
order derivatives are not, and they are thus considered
second-order transitions. Even the scaling behavior at
these boundaries can be analyzed using the tools of crit-
ical phenomena [26,35].

At first-order lines (“edges”), one has coexistence be-
tween the two “phases” (surface orientations). The cor-
ners of the ECS for T' < Tcgr are points of coexistence
between three orientations. Such an interpretation of
edges and corners as coexistence lines and points is im-
portant because it means that once we know the details
of the ECS, we can immediately determine into which
surface orientations an unstable surface will decompose.
The consequences of this will be further spelled out in
the next section where we consider the phase separation
process in detail in the two different temperature regimes
T <Tcr and Ter < T < TgRr.

III. PHASE SEPARATION FOR THE CASE OF
SOLID-VAPOR EQUILIBRIUM

We first look at a few snapshots of equilibrium config-
urations of a surface of orientation [15,5,1] in the [111]
RSOS model. In Fig. 4(a), we see that for T < Tcr
the configuration consists of a surface that (apart from
a few thermal fluctuations) is phase separated into [100],
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[010], and [001] facets. In Fig. 4(b), at a temperature
Tcr < T < Tps([15,5,1]), where Tps([15,5,1]) is the
phase-separation temperature for this surface, it appears
to have separated into one phase vicinal to the [100] facet
and another vicinal to the [010] facet. Finally, at a tem-
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FIG. 4. Equilibrium configurations for a [15,5,1] surface in
the [111] RSOS model at various temperatures: (a) T = 4J2,
(b) T = 14J2, and (c¢) T = 34J2. Minimization of the total
surface free energy, under the assumption that the surface is
close enough to being vicinal that the steps do not interact,
gives Tps([15,5,1]) ~ 22.6J; for the phase separation tem-
perature (see the Appendix and Fig. 7). This estimate should
provide an upper bound for the actual value of Tps([15, 5, 1]).

perature T > Tpg([15,5,1]), the surface is stable and
does not phase separate. These qualitative observations
set the stage for our detailed study of the equilibrium and
dynamic aspects of the phase-separation problem in the
two regimes T' < Tcr and Tecr < T < Tps([hkl]) < Tgr
in which phase separation occurs for an arbitrary surface

(kL.

A. Below TCR

In the regime T < Tcr, all surfaces except the {100}
facets are unstable. Any surface prepared in another
orientation will decompose into a combination of these
surfaces. We can determine which surfaces by utilizing
the mapping of the ECS onto a phase diagram discussed
above. For example, an arbitrary surface [hkl] with h, k,
and [ all positive is a surface that “lives” in the three-
phase coexistence region represented by the corner of the
ECS where the [100], the [010], and the [001] facets meet.
Therefore, such a surface will decompose into a linear
combination of these three surface orientations, with the
amount of each orientation determined by the require-
ment that the resulting surface still has the average ori-
entation [hkl]. (Electron micrographs of the faceting of
the [111] surface of NaCl can be found in Ref. [8], but see
also the comments in Ref. [17].) For the special case of
a [hkO] surface, the surface lives in the two-phase coexis-
tence region represented by the entire edge between the
[100] and [010] facets and therefore decomposition occurs
into just these two surface orientations.

In Ref. [13], we gave arguments for logarithmically slow
growth of the facet sizes below Tcgr for the case of the
decomposition of a [111] surface. There we also presented
strong numerical evidence from Monte Carlo simulations
supporting this claim. Although the discussion there was
for evaporation-condensation dynamics and within the
[111] RSOS model, the same arguments should hold out-
side the RSOS approximation and should also apply for
the case when the dominant mechanism is surface diffu-
sion (in which case the RSOS model is too restrictive to
be used). The arguments also generalize to the case of
decomposition of any arbitrary surface [hkl].

While the reader is referred to Ref. [13] for the nu-
merical evidence supporting our claim, the basic argu-
ment itself is repeated here for completeness: Consider
a coarsening surface such as that shown in Fig. 1. At a
time ¢, the characteristic length scale (i.e., average facet
size) is L(t). In order for the structure to coarsen further,
a step across must propagate across one of the facets, for
definiteness, say a [100] facet. Since the step consists,
microscopically, of pieces of [010] and [001] surface ori-
entations embedded in the [100] surface orientation, the
step consists (again, on the microscopic level) of edges
between facets of different orientation and thus it costs
an energy per unit length. Once the effects of entropy
are considered, we find that there is still a nonzero step
free energy (i.e., a free energy per unit length) up to
T = Tcor. In fact, within the RSOS approximation, this
step free energy as a function of angle can be calculated
exactly (see the Appendix). It is only at Tcr that this
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step free energy goes to zero for a step of a certain angle
(specifically, a 45° step).

The coarse-grained differential equation for the growth
of L(t) during the coarsening process can be written as
[13]

dL _ a(L,T)

Here m depends on the specific type of dynamics to be
considered. For example, for evaporation-condensation
dynamics, we likely have m = 2 or 3 (see Sec. IIIB).
However, the result below for the asymptotic growth law
is independent of m.

In the standard case where the kinetic coefficient
a(L,T) has no (or only very weak) dependence on L,
Eq. (3) gives L(t) ~ t/(m*1)_ However, here, the fact
that the coarsening involves activation over energy bar-
riers of height fg(T')L implies that the kinetic coefficient
a(L,T) decreases exponentially with L:

a(L,T) = age” 2ML/T (4)

fB(T) is a free energy barrier per unit length and is re-
lated to the step free energy as discussed at the end of
the Appendix. At asymptotically long times, Egs. (3)
and (4) imply

T

L(t) 75(T) In(¢) . (5)
It is worthwhile to consider this result in the context of
the recent work by other groups on this problem. Monte
Carlo simulations of the coarsening process for [hk0] sur-
faces, using essentially the same model as we have dis-
cussed above, have recently been presented by Vlachos,
Schmidt, and Aris [16]. They consider both the case of
the crystal in equilibrium with the vapor and the case
where there is a chemical potential difference between
them. For the equilibrium case, they found generally slow
coarsening with an effective exponent neg in L(t) ~ tmef,
which is small and decreases with decreasing tempera-
ture. This scenario is consistent with the behavior found
in previous studies of models believed to coarsen loga-
rithmically [13,21]. Since small exponents are hard to
distinguish from a logarithm (and the logarithmic form
is expected only asymptotically), the ability of Vlachos
et al. to fit their numerical data to power-law growth

with a small exponent should not surprise us.
We should note that the claim by Vlachos et al. that
a logarithmic form is inconsistent with their data [16]
is intended to mean only that a logarithm cannot be fit
over the entire time regime [36]. In fact, from the inset
of their Fig. 2(b), we see that a logarithm fits quite well
(at least as well as a small power law) over the later
time regime (¢ > 10%2). The data for shorter times are
in the so-called “facet nucleation regime” [16] and can
be fitted by neither a logarithm nor a power law. This
regime can be understood as the characteristic activation
time for depositing or desorbing particles on the initial
surface, since the smallest energy barrier of 4J; implies
a characteristic time on the order of ¢t ~ exp(4J1/T) ~
55 to successfully deposit the first layer on the surface.
(Here we use the fact that the energy scale w; in Ref.
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(16] is related to ours by wy = 4J;.)

Other results presented by Vlachos et al., such as the
speeding up of the growth rate when a chemical poten-
tial difference exists between crystal and vapor, are at
least in qualitative agreement with our picture (see Sec.
IV). Thus we can say that the simulations performed in
Ref. [16], while certainly not providing very conclusive
support for our claims, are at least consistent with them.

The continuum approach of Liu and Metiu [15], by
contrast, clearly predicts power-law growth of the facet
sizes. How are we to reconcile this difference? Our as-
sertion is that this continuum approach misses a funda-
mental part of the problem that proves vital to the dy-
namics in the discrete models (and, we believe, although
we are somewhat less certain, in the experimental sys-
tems). In particular, in those cases where an unstable
surface decomposes into surfaces that are smooth (i.e.,
below their roughening transition), the dynamics of the
faceting of surfaces generically involves the propagation
of a step across the facet. Since such a step has a nonzero
free energy per unit length for T < Tgg, this leads to
length-scale-dependent barriers and logarithmically slow
growth.

Such a dependence is not captured by a continuum
model, which does not recognize that there is a smallest
size, i.e., the width of a step, determined by the discrete-
ness of the system. Rather, in Ref. [15] the authors intro-
duce a term into their free energy that imposes an energy
cost for rapid changes in surface orientation. This cap-
tures some of the physics that arises in the microscopic
models, but clearly not all of it. Furthermore, because
the Langevin equations cannot cope with singularities
(and in keeping with the spirit of coarse graining), they
round the cusps in the surface tension associated with
the crystal facets. This means, in effect, that there is no
longer any roughening transition in the model: all surface
orientations are rough.

The idea that the discreteness of a crystal is funda-
mental in determining dynamical, and even equilibrium,
behavior is certainly not without precedent. The very
existence of a roughening transition and of nucleated dy-
namics for crystal growth below this transition is depen-
dent upon including terms in the Hamiltonian (and the
resulting dynamical equations) that explicitly model the
discreteness of the system [37-40]. As far as we know,
there is no known prescription for determining a priori
whether such discreteness will be relevant or irrelevant in
a renormalization group sense. In the absence of such a
prescription, purely continuum approaches to the prob-
lem (even if they mimic some effects produced by the
discreteness, e.g., by using anisotropic surface tensions
and energy penalties for changes in surface orientation)
should, we believe, be used with a certain degree of cau-
tion.

In Sec. IV we will return to the case of coarsening be-
low T¢r, but in the case where the crystal is slightly out
of equilibrium with the vapor. There we will find that
the difference in chemical potential between vapor and
crystal sets a maximum size to the free energy barrier,
so the problem becomes one of nucleation and there is a
return to power-law behavior at late enough times. How-
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ever, first we will consider the coarsening process for the
case of crystal-vapor equilibrium but in the temperature
regime above Tcg.

B. Above Tcr

When we consider the diagram in Fig. 3 showing the
stable orientations at a temperature Tcr < T < Tgr,
three questions immediately present themselves: (1) How
does one determine the location of the boundaries be-
tween the stable and unstable surface orientations? (2)
For a surface in the unstable region, what are the orien-
tations of the stable surfaces it breaks up into? (3) What
are the kinetics of this process?

1. Equilibrium aspects

We find it most natural to begin with a discussion of
the second question raised above. The behavior of an
unstable surface depends on the details of the ECS. In
Figs. 5 and 6, we consider two possible scenarios [41].

In Fig. 5(a), for what we dub the “ridge scenario,” the
sharp edges (“ridges”) between the facets continue into
the curved region of the ECS. As one moves along such a
ridge into that region, the angle between the unit vectors
normal to the two surfaces that meet at that point on the
ridge decreases from 90° at the facets to 0° at a second-
order point at which the ridge terminates. Since at any
point along this ridge two surface orientations meet, the
mapping of the ECS onto a phase diagram tells us that
this means there is coexistence between two surface ori-
entations at each point. Without loss of generality, we
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FIG. 5. The “ridge scenario.” In (a) we show a closeup
of the corner region of the ECS for Tck < T < Tgr, un-
der the assumption that the sharp edges between the facets
continue into the curved part of the ECS, finally terminat-
ing at second-order critical points. At any point along this
edge, there is “coexistence” between two surface orientations.
(Here sharp first-order edges are shown by dashed lines while
the second-order Pokrovsky-Talapov boundaries between the
facets and the curved part of the ECS are shown by solid lines.
The solid circles represent second-order critical points at the
end of the first-order lines.) In (b) we present the diagram
of the stable surface orientations, showing how any unstable
surface will phase separate into the two coexisting stable sur-
faces. In our example, any orientation along the dashed curve
(such as the one indicated by the open circle) decomposes into
the two (marginally) stable surface orientations indicated by
the solid circles.
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consider the case of a surface [hkl] with h > k > 1 > 0.
Figure 5(b), showing part of the diagram of stable surface
orientations, demonstrates how such a surface prepared
at an unstable orientation breaks up into two surfaces.
Note that, by symmetry, the two coexisting surfaces are
symmetric about the line A = k. Also, a linear combina-
tion of these two surface orientations must add up to give
an average surface orientation of [hkl]. These two con-
ditions, along with the third condition specifying those
surfaces that are on the curve of marginally stable sur-
faces, completely specify the two surfaces that the surface
[hkl] decomposes into.

In Fig. 6(a), which we dub the “conical point scenario,”
the sharp edge terminates at the point where it meets the
facet boundaries. (This can be considered as a limiting
case of taking the length of the ridges into the curved re-
gions to zero.) In this case, all the unstable surfaces must
live in the point where the edge meets the facet bound-
aries. Furthermore, all the marginally stable orientations
along the boundary in Fig. 6(b) must meet at this one
point on the ECS. The slope of the ECS at this point de-
pends on the angle from which it is entered. Therefore, in
the rounded region of the ECS, the point has the symme-
try of the tip of a cone, hence the name “conical point.”
Also note that the ECS has a jump in slope as one goes
from the rounded region of the ECS, through the conical
point, and onto one of the facets (or, alternately, along
the sharp edge between the two facets) [42].

Naively, one might expect that the ridge scenario
would occur in general, as the conical point scenario
seems to require that there be special symmetry about
the conical point, which results in the meeting of all
the different orientations at this single point on the
ECS [43]. Such a point is very much analogous to the
zero field (H = 0) point in the low temperature phase
of a three-dimensional XY model, at which an entire
one-parameter family (circle) of magnetizations coexist.
However, in that model such degeneracy is clearly the
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FIG. 6. The “conical point scenario.” In (a) we show the
corner region of the ECS for Tcr < T < Tgr, under the as-
sumption that the sharp edge between the facets terminates
at the point where it meets the curved region of the ECS.
At this conical point (indicated by a solid circle), an entire
one-parameter family of surface orientations coexist. In the
curved part of the crystal shape, these orientations come to-
gether at this point just as they do at the tip of a cone. In
(b) we present the diagram of the stable surface orientations,
showing how an arbitrary unstable surface orientation (shown
by an open circle) will decompose into a combination of the
entire one-parameter family of coexisting surface orientations
(shown by the bold solid curve).
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result of the symmetry with respect to spin orientation
0 that occurs for H = 0 in the original Hamiltonian. In
the present problem, there is no such obvious symmetry
and thus such a point would not be expected unless the
terms breaking this symmetry become irrelevant under
renormalization of the original Hamiltonian.

To rigorously determine which scenario occurs in one
specific model, we have recently studied [22] the [110]
RSOS model for the surface of an fcc crystal with nearest-
neighbor attractive and next-nearest-neighbor repulsive
interactions [26]. In this model, Tcr = 0, i.e., the corners
round for any T > 0. However, a sharp edge separating
the [111] and the [111] facets persists up to a nonzero
temperature TgR.

The advantage of this model is that it can be mapped
onto the six-vertex model [26,44] that is exactly solved
[45,46]. The solution of the six-vertex model, which is
given in terms of integral equations, can be investigated
numerically and, in certain limits, analytically [22]. We
find that in this model, the conical point scenario oc-
curs, as was conjectured by Jayaprakash and Saam [26]
at the time when they first considered this RSOS model
[47]. Furthermore, we find interesting nonanalytic scaling
behavior in the curved region of the ECS as one moves
away from the conical point [22]. Note that such nonana-
lytic scaling behavior at a first-order coexistence bound-
ary cannot be explained within mean field theory, where
first-order transitions are associated simply with cross-
ings in the local minima in the free energy surface. It
is only through the effects of renormalization that such
nonanalytic behavior can appear.

Clearly, the question that must be asked is how gener-
ally a conical point occurs, as opposed to having a ridge
extend into the rounded region of the ECS. We are not
able to answer this question rigorously. However, we be-
lieve that the evidence from the six-vertex model suggests
that the conical point will be a general feature of equi-
librium crystal shapes at the point where a sharp edge
between facets meets a rounded region of the ECS. This
belief is based upon the following observation: In the
six-vertex model, the appearance of the conical point,
having such a high degree of symmetry, does not seem to
be due to any special symmetry that already exists in the
original Hamiltonian. Rather, the symmetry seems to be
generated spontaneously under renormalization (and this
occurs for all temperatures and values of the interaction
parameters that put us in the “low temperature ferro-
electric regime” of the model). Therefore, we expect such
conical points with the associated scaling behavior to be
a rather generic feature of equilibrium crystal shapes,
probably occurring for simple cubic as well as fcc mod-
els and outside the RSOS approximation. On the other
hand, Neergaard and den Nijs have recently presented an
argument that the conical point, or at least the specific
scaling exponents at this point, may be a rather special
feature of the six-vertex model [48]. In light of these con-
flicting opinions, we must say that the generality of this
feature remains an open question.

It is interesting to note that the conical point in the
crystal shape and the associated coexistence region in the
space of surface orientations is precisely the converse of

a conical point (cusp) in the surface tension and the as-
sociated flat facet on the crystal shape F'(h,v) [49]. The
analog of the one-parameter family of orientations coex-
isting for the former case is the one-parameter family of
points on the crystal shape (namely, those on the bound-
ary of the facet) that all correspond to the cusp point in
the surface tension. Also, the sharp edge, or ridge, be-
tween the facets in F'(h,v) is analogous to the “groove”
in the surface tension that exists between the two co-
existence regions associated with the two conical points
[22].

We are now ready to discuss the first question posed at
the beginning of Sec. III B, namely, the determination of
the boundaries between stable and unstable orientations
as a function of temperature Tcr < T < Tgr (see Fig. 3).
These boundaries can in fact be determined exactly for
the fcc case, within the [110] RSOS approximation, be-
cause of the mapping onto the exactly solved six-vertex
model [22]. For the simple cubic case, we do not have
an exact solution even within the [111] RSOS approxi-
mation. However, we can calculate the “opening angle”
0.(T) for this curve. [In Fig. 6(b), this is the opening an-
gle between the bold solid line and the octant boundary.]
This angle is also half the opening angle 26.(T") between
the two facet boundaries on the ECS at the conical point.
Because calculation of 6.(T) involves surfaces that are
vicinal to the facet orientations (i.e., the steps across the
facets are widely spaced so that step-step interactions are
not important), it can be determined from an exact cal-
culation of the free energy of an isolated step within the
[111] RSOS approximation. The calculation of the step
free energy f,(T,0) and the angle 6.(T") are discussed in
the Appendix. An alternate way to view 6.(T) is that
its inverse function Tpgs(0), gives the “phase-separation
temperature” for a vicinal surface (i.e., that temperature
below which the surface is unstable) as a function of the
angle of the steps across the surface (and thus its orien-
tation). A plot of Tpg(8) is given in Fig. 7.

We have carried out some simulations of the breakup of
various surfaces [hkl] with A > k > | > 0 at various tem-
peratures. Those surfaces studied that are in the limit
l < h ([15,5,1], [22,7,1], and [30,29, 1] surfaces) appear
to decompose into two phases, one vicinal to the [100] sur-
face and the other vicinal to the [010] surface [see, e.g.,
Fig. 4(b)]. When the system is quenched from high tem-
peratures, thin stripes of these two vicinal phases form
and then coarsen over time until only one stripe of each
phase remains in the system. We have measured the ap-
proximate angles of the steps across these vicinal phases
and find that they are in quite good agreement with our
formula for 6.(T) (see Fig. 7).

Note that the surface appearing to decompose into
only two surface orientations, rather than an entire one-
parameter family, seems to be in contradiction to the con-
ical point scenario that we have argued is likely to apply.
However, three important points should be stated. The
first is that it is in fact hard to tell if there are really
only two orientations present. What we can say with
confidence is that there seems to be a breakup into a
phase with orientations near [100] and a phase with ori-
entations near [010] and that both these phases consist
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FIG. 7. Phase separation temperature Tps(6) for a vicinal
surface as a function of the angle of the steps across it in
the [111] RSOS model, as calculated in the Appendix. Alter-
natively, as explained in the text, the inverse function 6.(T")
can be thought to represent the angle of the steps across the
vicinal surfaces that an unstable crystal surface [hkl] with
0 <k < hand 0 <! < h decomposes into. The symbols
represent measurements of 0.(T) from simulations of this de-
composition process. For a finite value of J,/J; (i.e., relaxing
the RSOS constraint), the curve would look qualitatively sim-
ilar for large angles but would not diverge as § — 0. Instead,
we would have Tps(6 — 0) = Tgr.

of vicinal surfaces with steps having approximately the
angle 0.(T') across them. This is not really in contradic-
tion with what we expect: In the conical point scenario,
the decomposition will consist of a weighted distribution
of the surfaces in the one-parameter family of marginally
stable orientations. For decomposition of a surface close
to being a [hkO] surface, the decomposition must primar-
ily consist of those surfaces vicinal to the [100] and the
[010] surfaces in order to get the correct average surface
orientation. (For a [hkO] surface itself, the decomposi-
tion will simply be into the [100] and the [010] surface
orientations.)

Our second point is that when we then carry out simu-
lations of surfaces that are not as close to being an [hk0]
surface (and at temperatures nearer to Tcg in order that
we see any phase separation at all), then the equilibrium
configurations do not appear to be so simple. Figure 8
shows an equilibrium configuration of a [13,13,4] sur-
face at T = 8J,. At T = 9J,, the configurations are
even more complicated and it is in fact hard to tell if
the surface has phase separated at all. Unfortunately, in
studying these configurations, we have found it difficult
to quantify the surface phase separation since one would
have to measure the surface orientation coarse grained
over some region, because (unlike, e.g., in the case of an
XY model) the order parameter is not a continuous vari-
able at the microscopic level: each rhombic tile represents
either a [100], a [010], or a [001] orientation. The correct
scale over which to coarse grain is not obvious and, of
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FIG. 8. Equilibrium configuration for a [13,13,4] surface in
the [111] RSOS model at T = 8Jz. Note that the surface
appears to have phase separated, but the equilibrium state is
quite complicated. This may be an indication that many dif-
ferent surface orientations are involved, as one would expect
from the conical point scenario.

course, the larger this scale, the larger the system size
should be in order to avoid finite-size constraints.

Our final point is that the periodic boundary condi-
tions put some constraints on the system, specifically,
that the stripes of each phase in Fig. 4(b) must be hori-
zontal. This may be influencing the results considerably.
Therefore, one might need to go to much larger system
sizes (which is not computationally feasible at present) in
order to start truly seeing the other available surface ori-
entations. Another approach would be to try to choose
alternative boundary conditions (such as free or helical).
However, implementing such boundary conditions and
forming the initial surface configuration is a nontrivial
task in this model.

In the final analysis, we would have to say that the
simulations currently do not provide conclusive evidence
either for or against the conical point scenario in this
model.

2. Kinetics

To study the kinetics of the phase ordering process, we
turn to the continuum formalism used by Liu and Metiu
[15]. For the case of the evaporation-condensation mech-
anism, and neglecting noise since temperature is believed
to be an irrelevant variable, they derived the Langevin
equation

2 — —afswvien - v(v-250)] @

where r = (h,v) and % is a vector specifying the surface
orientation. (Here we have used the constraint Vx = 0
to rewrite the first term on the right-hand side [3]. This
constraint follows from the fact that v is the gradient of
the surface.) If surface diffusion is the dominant mech-
anism, then there is an additional —V?2 in front on the
right-hand side. Fy(%)) is some suitably coarse-grained
projected surface tension, not the full thermodynamic
projected surface tension. In particular, Fy(4) is not
necessarily convex since, in the case when the v orienta-



51 PHASE SEPARATION OF CRYSTAL SURFACES: A LATTICE. ..

tion is unstable, it reflects the free energy of metastable
configurations having orientation % rather than the ther-
modynamic configurations once phase separation has oc-
curred (see, e.g., Ref. [50]). The term “projected” refers
to the fact that the surface tension is a free energy per
unit area of some reference plane, as discussed in Sec. II.

Because the order parameter 1) is conserved, the sta-
ble stationary states (i.e., those orientations into which
a surface decomposes) are not simply given by the min-
ima of Fo(%). Rather they are given by those values of
1 that share a common support tangent on Fy(v)) (see,
e.g., Fig. 3 in Ref. [15]).

Note that the structure of Eq. (6) is very similar to
that for the traditional phase separation process, i.e., the
so-called Cahn-Hilliard equation (see [51]). The one dif-
ference is the reversal of the ordering of the two vector
operators in the second term on the right-hand side: Here
we have the gradient of a divergence (and also the con-
straint that V x 9 = 0), while in the traditional case
one has the divergence of a gradient [3]. The former case
causes a coupling of the different components of the or-
der parameter, and of the spatial and order-parameter
degrees of freedom, while the latter case leaves them un-
coupled. (In fact, the former case only makes sense if
n = d, where d is the spatial dimension of the interface
and n is the number of degrees of freedom of the order
parameter.)

Before considering the case of most interest to us at
present (where phase separation is expected to occur into
a continuous family of orientations), we will first discuss
the “simpler” case of separation into a finite number of
orientations. This has been the subject of much very
recent work. In Ref. [15], the authors assumed a form
for the surface tension that results in a few (e.g., three)
stable stationary states in Fy(1). On the basis of simu-
lation results and power counting, they argued that the
growth of the domain size likely satisfies L(t) ~ t!/4.
However, in the case of traditional phase separation (i.e.,
governed by the Cahn-Hilliard equation) into a finite
number of phases, such power counting is known to fail.
Because of the sharpness of domain walls, one finds in-
stead L(t) ~ t'/3. The most general arguments for these
results are given by Bray [51], who argues that the growth
law in the case of conserved dynamics can be determined
from the energy cost of a domain wall. If the energy
cost goes like E(L) ~ LY, then L(t) ~ t*/(2+d-v)  For
the case of sharp domain walls, e.g., in an Ising model,
y = d — 1, whereas in the case of domain walls that are
spread out over a width L, as in the isotropic vector spin
models, y =d — 2.

Do Bray’s arguments continue to hold for Eq. (6) or
does the reversal in the order of the vector operators re-
sult in different behavior? It appears that, in fact, the
renormalization flow equations change such that simple
connection between y and the growth law exponent no
longer necessarily follows [3]. Indeed, in addition to Liu
and Metiu [15], a few other groups have recently sim-
ulated equations similar to Eq. (6) and have found re-
sults most compatible with L(t) ~ t/4 [3,6]. Thus it
seems possible that the order of the vector operators does
change the kinetics of the phase separation process. On
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the other hand, given the history of low measured expo-
nents (often around 1/4) in Ising systems where eventu-
ally the exponent was shown to cross over to 1/3 [52],
we believe that, in the absence of further analytical un-
derstanding, both L(t) ~ t'/4 and L(t) ~ t/3 (or even
some intermediate exponent) should still be considered
as viable candidates for the asymptotic behavior.

Finally, we note that we have also published some of
our own numerical evidence bearing on this question. In
Ref. [13], we looked at the behavior of the characteristic
length scale for the coarsening of a [111] surface cooled
slowly at a constant rate I'. Assuming the “underlying
growth law” in the absence of diverging barriers would be
L(t) ~ t'/3, we argued that the behavior under asymp-
totically slow cooling would be L(I',T = 0) ~ I'"1/4,
It was noted that this expectation was in reasonable
agreement with our numerical results. Here we add two
comments: (1) If the “underlying growth law” is instead
L(t) ~ t'/%, then the corresponding behavior at a con-
stant cooling rate is L(I',T = 0) ~ I'"'/% (see endnote
68 of Ref. [13]). (2) The simulations performed there,
and further simulations carried out on systems as large
as 240% [53], cannot conclusively distinguish these two
possibilities, with the best estimate of the exponent of I’
being —0.23, i.e., about halfway between the two expec-
tations.

Of course, the considerations of the previous three
paragraphs apply to the case where the surface tension
is such that phase separation occurs into a finite num-
ber of different orientations separated by sharp domain
walls. This will be relevant to our discussions in Sec.
IV. In the present case, however, our Fy(1) is expected
to be of such a form that we have phase ordering into
a continuous one-parameter family of orientations. The
numerical work of Siegert and Plischke [3] suggests that
in this case, as in the standard case when the vector op-
erators are reversed (e.g., an isotropic XY or Heisenberg
model), the exponent for the growth law is 1/4. (Note,
however, that, technically speaking, the case n = d = 2
is excluded from Bray and Rutenberg’s theory of phase
ordering in the Cahn-Hilliard equation because of long-
range correlations between the topological defects [51].
Simulations of this case are nonetheless consistent with
L(t) ~ t'/%, but perhaps with logarithmic corrections
and deviations from scaling [54].)

It is worth emphasizing that the whole decomposi-
tion process here is quite different from the case where
separation occurs into a finite number of orientations:
Here, there are really no well-defined domains or “facets”
formed at all; rather, it is the length scale over which the
surface bends that will increase over time (which can be
measured most easily from a correlation function or its
Fourier transform). Thus terms such as “faceting” and
“phase separation” seem somewhat inappropriate.

IV. CRYSTAL GROWTH OR ETCHING

We now consider the case in which the crystal is
slightly out of equilibrium with its vapor, that is, the case
of slow growth or etching. In fact, it is known that, far
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out of equilibrium, the nonequilibrium effects can drive
the formation of facets even when such faceting would not
occur in equilibrium [3,6]. Here, however, we will assume
that we are close enough to equilibrium that the stability
of a surface is still determined from equilibrium consid-
erations and will study the effect of a chemical potential
difference Ay between solid and vapor phases [16] on the
dynamics of the phase separation. In the magnetic lan-
guage of the three-dimensional Ising ferromagnet, such a
situation can be thought of as the application of a uni-
form magnetic field in the model.

First we consider the temperature regime T' < Tcr
and, for definiteness, we discuss the case of crystal growth
(Ap < 0). Then the free energy cost associated with
adding surface atoms to produce a step across a facet
can be written approximately as

AF = f,(T,0)L — |Au]%2 tan(6) . (7

Here f,(T,0) and L are the projected step free energy
and the projected length of the step, respectively (see
the Appendix). The projection is onto one of the lattice
axes and 6 is the angle of the step relative to that axis.
[Equation (7) is valid when the linear size of the facet
itself is larger than L.] The structure of the problem is
the same as that of determining the growth rate (due to
nucleation) of a growing crystal surface at a temperature
below its roughening transition [38]: Assuming that |Apy|
is not too large, then for small L the first term in the
expression dominates and AF' increases linearly with L.
However, for large enough L, the second term dominates
and AF is a decreasing function of L.

To find the smallest possible barrier associated with
propagating a step across an infinite facet, we want to
find the length of step Lo and the angle 6y such that
the free energy cost is maximized as a function of L
and minimized as a function if §. This we do by setting

8(AF)/8L = O(AF) /06 = 0. We find

fP(T7 00)

Lo~ Xl tan(60) ° ®)

with an implicit expression for 6, given by

afp(T’ 0) — M (9)
dftan(0)] |g—p, 2tan(6o)

However, this latter expression always has the solution
tan(fo) = 1, independent of Ap or T, so a step of 45°
always gives the smallest barrier. Thus (8) becomes

Lo ~ £,(T,0 = 7/4)/|5p] (10)
and the free energy barrier is

AFmax ~ ——«fﬁ (T’ b = 7r/4)
2|Ap|

(11)

Equation (11) gives the maximum size of the barriers
for a coarsening surface. The barriers to coarsening will
grow and thus the coarsening of the surface will look
roughly logarithmic, out to a time of order
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te ~ explfp(T,0 = w/4)/ (2| Ap|T)] (12)

when the characteristic facet size L is of order Lo. At
times longer than this, the barrier height to coarsening
remains saturated at AF,, .., independent of L, and the
growth will thus proceed with a power law

L(t) ~ (v)", (13)

with v ~ exp[—f2(T,0 = n/4)/(2|Ap|T)]. Here n is
the exponent for growth associated with Eq. (6) in the
case where the surface breaks up into a finite number of
orientations (thus either n = 1/3 or n = 1/4, as discussed
in Sec. III B 2).

The form of v is closely analogous to that for the rate of
growth of a defect-free crystal surface below the roughen-
ing transition [38]. The one important difference, how-
ever, is that in this latter case, no driving force exists
for the growth of the crystal in the limit Ay = 0. In
the case of the phase separation problem, however, while
there is still no driving force for growth of the crystal in
the absence of a chemical potential difference, there is a
driving force for phase separation of the surface. Thus
the characteristic length scale grows with time even when
Ap = 0, but the process occurs logarithmically slowly in
this case.

We have performed Monte Carlo simulations of the
[111] RSOS model in order to test certain aspects of our
above arguments. First, in order to study the tenet of
our argument involving the behavior of the free energy
barrier as a function of the size of the facet [Eq. (7)], we
consider the process of removing one face of a “cubical
projection” from a crystal surface, as illustrated in Fig. 9.
Figure 10 is an Arrhenius plot of the time such a process
takes as a function of the linear size L of the projection
for the case Ay = 0. (Cf. Fig. 6 of [13] where a similar
plot was presented for the case of fully three-dimensional
coarsening. Also see that reference for further details
about the simulation methods.) We see that, as is our
expectation, the slope on the Arrhenius plot, and thus
the free energy barrier, is an increasing function of the
size of the projection. In fact, the expected free energy
barrier in the limit T — 0 can easily be calculated [55]
to be

12.]2, L=2

47 (L+2), L>2. (14)

Fp(L,T =0) = {

(a) (b)

FIG. 9. Shrinking a cubical projection in the [111] RSOS
model. (a) Cubical projection with L = 4. (b) Same projec-
tion once one face has been removed. For Ay > 0, this con-
figuration is lower in energy than that of (a) by 4J2 + ApL?.
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FIG. 10. The time to shrink a cubical projection for
Ap = 0. Shown are the results of Monte Carlo simulations
for the average time to remove the first face from a cubical
projection of size L [such as that shown in Fig. 9(a)] for the
case Au = 0. Each point is an average over 900 runs with
standard error smaller than the symbol size. The dotted lines
are one-parameter fits to the form t = to(L)e"8(L:T=2/T with
Fp(L,T = 0) given by Eq. (14) and to(L) a free parameter.
Between 4 and 15 of the lowest temperature data points are
used for each fit.

Fits to the form t = to(L)ef8(L-T=0/T  with to(L) as
a free parameter, are also shown in the figure and are
generally very good for the low temperature data. Only
for L = 8 are systematic deviations from the fits still
evident at the lowest temperatures, with the slope on the
plot being greater than that predicted. This deviation is
due to our approximation of Fg(L,T) by Fg(L,T = 0)
(see Sec. II of Ref. [13]).

In Fig. 11 we present an Arrhenius plot for the time
to shrink a cubical projection of size L for Ap/Js = 2.
(Here the sign of Au is chosen to be positive, i.e., to
favor shrinking of the projection.) The contrast to Fig.
10 is apparent: For small L, the free energy barrier is an
increasing function of L. However, for L > 6, the barrier
appears to saturate. The expected barrier for each L can
in fact be calculated by considering the highest energy
state the system must pass through in removing a face
on the projection. This gives

12J; — Ap L=2
Fg(L,T=0)={ 4Jo(L+2)—-Ap(L+1), 2<L <6
18J; , L>6.
(15)
(Here the saturation of the barrier at L = 6 is for

the specific case of Au/Js = 2.) Fits to the form
t = to(L)eF2(LT=0)/T  with to(L) as a free parameter,
are also shown in the figure and are generally very good
for the low temperature data. (The one fit that shows
a bit of deviation is for L = 6, probably because of the
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FIG. 11. The time to shrink a cubical projection for

nonzero Au. Shown are the results of Monte Carlo simu-
lations for the average time to remove the first face from a
cubical projection of size L for the case Au/J; = 2. Each
point is an average over 900 runs with standard error smaller
than the symbol size. The dotted lines are one-parameter fits
to the form t = toefB8(HT=9/T with Fg(L,T = 0) given by
Eq. (15) and to(L) a free parameter. Between 6 and 18 of
the lowest temperature data points are used for each fit. For
L < 4, some of the fitted data lie off scale.

presence of a large degeneracy of barrier states with very
similar barrier heights.) Also, the value of 18J; that we
get for the saturated barrier height is in quite good agree-
ment with the estimate of 16J; provided by Eq. (11) in
the limit 7' -— 0 [which can be worked out using Eq. (9)
and formulas in the Appendix].

The preceding study tested our assertions about the
barrier heights to coarsening for one very artificial kind
of configuration. In order to test more directly the effect
of a nonzero Ap on the coarsening process, we present in
Fig. 12 full-scale simulations of the coarsening of a [111]
surface, which is initially in a random (7" = co) configu-
ration and is quenched to T' = 2J,. The figure shows the
growth of the characteristic length scale L(t) over time
for various values of |Ap|/J2. We see that, in its qualita-
tive aspects, the Monte Carlo data are in agreement with
our expectations. First, we consider the case Apy = 0.
The growth, although not yet quite logarithmic as would
be expected at asymptotically long times, is slower than
a power law; the effective exponent in L(t) ~ t™f is
negr = 0.07 at the latest times and is continuing to slowly
decrease.

As the chemical potential difference between solid and
vapor is increased from zero, the growth becomes faster.
For |Ap|/J2 = 0.5, the effective exponent is virtually con-
stant over the six decades of time shown. For the larger
|Ap|, the increase in the effective exponent with time
is quite gradual. However, the most marked bending of
the data does appear to occur at times whose trend with
|Ap| is in qualitative agreement with (but that seem to
be quantitatively a bit later than) the expectations of Eq.
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FIG. 12. Growtb of the characteristic length scale L(t) dur-
ing coarsening of a [111] surface at T = 2J, for various val-
ues of Ay (given on the figure in units of Jz2). The runs
were performed on a 120% system. For each value of A,
the Monte Carlo data have been averaged over 77-150 runs,
with error bars showing the standard error. A line of slope
1/4 has been shown to facilitate comparison with the power
law L(t) ~ t'/%. The characteristic time when we would ex-
pect a change in growth law on the basis of Eq. (12) and using
Fol(T = 2J5,0 = w/4) ~ 6.75J3 is t. ~ 3 x10%, 1 x10%, 2x 10°,
and 8 x 10° for Ap = 2.0, 1.2, 0.8, and 0.5, respectively.

(12). For |Ap|/J2 = 1.2 and 2.0, there is a regime where
the effective power law approaches (although remains a
bit less than) 1/4.

Also visible for |Ap|/J2 = 2.0, and just barely for
|Ap|/J2 = 1.2, is a rather sharp leveling off in the growth
of L(t) at late times. Studying the configurations at
these late times, we find that the system appears to have
reached a steady state in which at any time, there are
structures such as ledges because the crystal is in the pro-
cess of growing (or shrinking), due to the nonzero value
of Au. The fact that such growth is in progress puts a
maximum limit on the average facet size. [Our measure
of L(t) as being inversely proportional to the total length
of boundary between the different facet orientations may
also be underestimating somewhat the true value of the
characteristic length scale. See Sec. IV C of Ref. [13].]
A more detailed study of correlation functions might be
useful in further characterizing this behavior (e.g., one
might even find a breakdown of scaling). Clearly, these
are effects that occur in a regime beyond which our as-
sumption of being very near equilibrium is valid.

In closing this section, we briefly discuss the likely ef-
fects of a nonzero chemical potential difference in the
temperature regime Tcr < T < Tgr. Here the coarsen-
ing is already expected to be a power law for Ay =0. A
nonzero Ay seems unlikely to do more than alter the pref-
actor of the power law. One important question, how-
ever, is whether it might provide a relevant perturbation
that will break the symmetry associated with the conical
point and thus allow the selection of two particular ori-

entations for the surface to separate into. In the absence
of a renormalization group picture for the conical point
on the ECS, we do not know how to determine if this
perturbation is relevant and hence this question remains
unanswered.

V. SUMMARY AND CONCLUSIONS

In this paper, we have considered the phase separation
of crystal surfaces within an Ising lattice gas model for
materials with the sodium chloride structure. We found
that, depending on the temperature and growth condi-
tions, a number of interesting behaviors can be observed.

For a crystal in equilibrium with its vapor, we argued
that the coarsening of the surface structure will be loga-
rithmic in time for temperatures below the corner round-
ing transition temperature Tcr, where an arbitrary sur-
face [hkl] (with h, k, I > 0) undergoes three-phase sepa-
ration into the smooth [100], [010], and [001] facets. Such
sluggish dynamics occur because the coarsening process
involves the creation of steps across the smooth facets
and these steps have a nonzero free energy per unit length
below Tcr. Since the discreteness of the system plays
a fundamental role here, recently proposed continuum
models for the dynamics of phase separation of surfaces
fail to capture this effect.

At all temperatures between Tcr and the edge-
rounding temperature Tggr, some surface orientations re-
main unstable. It appears likely, based on the exact solu-
tion of a related model, that (because of a spontaneously
generated symmetry) such surfaces will generically un-
dergo decomposition into an entire one-parameter family
of surfaces. This process, analogous to phase ordering in
an XY (or Heisenberg) model, should obey L(t) ~ t1/4.
Only if effects not considered (such as elastic interac-
tions or surface melting) break the spontaneously gener-
ated symmetry does the possibility exist for simple two-
phase separation. In that case, the growth law will be
L(t) ~ t™, with either n =1/3 or n = 1/4.

Such an algebraic growth law should also hold at late
enough times below Tcr for the case of driven surfaces,
i.e., where the crystal and vapor are not in equilibrium
(crystal growth, or etching), with the crossover time
from very slow (approximately logarithmic) to power-law
growth diverging rapidly as the chemical potential differ-
ence between crystal and vapor decreases to zero. We
noted the close analogy in this case to the growth of a
crystal facet by nucleation below the roughening transi-
tion.

In closing, we should mention some effects that have
been neglected in our microscopic model and could con-
ceivably be important in real materials. First, there are
impurities and defects that may act to speed up the phase
separation of surfaces, just as they do for the growth of
crystal surfaces below the roughening transition [38,56].
This could be particularly important given that impuri-
ties often tend to segregate to the surface, so that even
reasonably pure samples can have fairly dirty surfaces.
Second, there are also elastic effects, which have been
discussed in recent work [14,15,57,58] as possibly slowing
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down the faceting process and even stabilizing the sys-
tem at a maximum facet size. There is some recent ex-
perimental evidence that seems to support this scenario
[10]. Finally, there is the possibility of surface melting
[40,49] and surface reconstructions [12], which can result
in a more complicated ECS. Clearly these issues must all
be addressed in order to obtain a realistic picture of the
thermal faceting in real materials.
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APPENDIX: CALCULATION OF THE STEP
FREE ENERGY AND RELATED QUANTITIES

Here we calculate the step free energy f,(T,0) as a
function of temperature 7' and step angle § (measured
with respect to one of the lattice axes) within the [111]
RSOS approximation. We then use this result to discuss
features of the phase separation problem in the temper-
ature regimes both below and above Tcr. The reader is
also referred to Ref. [20], where a calculation of the step
free energy was performed from a somewhat different,
but related, perspective.

It is in general quite difficult to compute the step free
energy in a so-called canonical ensemble, where we re-
strict the step to have a certain angle. The easier route
is to compute the step free energy in the grand canoni-
cal ensemble, where we do not constrain the step angle,
but instead apply a field 2 which couples to the angle of
the step and thus allows us to control the average step
angle [59]. To obtain f,(T,8) from fs(T,h) we then need
only determine this average step angle 6 as a function
of h. Then, f,(T,0) is related to fs(T,h) by a Legendre
transform, which has an intuitive physical interpretation.

In the [111] RSOS approximation, a step across, say, a
[100] surface consists simply of a one-dimensional series
of plaquettes of either the [010] or the [001] orientation
[see, e.g., Fig. 4(b)]. If we apply a field & in order to favor
one orientation over another, then the Hamiltonian for
the step is equivalent to that for a one-dimensional Ising
model in a magnetic field. Within this grand canonical
ensemble, there are several routes to calculate the step
free energy. If one makes the analogy to the Ising model
then one can write down the free energy per plaquette
[20]. This is done most easily by using a transfer matrix
[60]. However, to make connections to free energy barri-
ers, we find it most natural to compute the free energy
per unit projected length along one of the lattice azxes.

The calculation proceeds as in Sec. II of Ref. [13], ex-
cept with the addition of a field term —m;h to the energy
of a column in Eq. (2.10) of [13]. Here we are interested
only in the large-size (L — oo) limit in which we can
write the partition function as
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where L is the projected length along the [010] axis. The
quantity f,(T,h), a free energy per unit projected length
at a given applied field R is then
= T
fp(T,h)= —7 In[Z(L)]

2
q°H
—4J,—Tin(1
2 n(+1—¢0’

where ¢ = exp(—4J2/T) and H = exp(h/T). The (aver-
age) tangent of the angle of the step with respect to the
[010] axis is given by

Z(L) = e +hL/T [1

(A2)

_0fp(T, k)

Oh
¢*H
= 0B —qH T ¢H) - (43)

tan(f)=

This equation can be inverted in order to express A as a
function of » = tan(6):

2—q)r+q—+/(r2+1)q? +2(2 — q)gr

B:Tm(
2q(1 —q)r

(A4)
The step free energy as a function of angle is then given
by

f+(T,0) = [fo(T, k) + htan(8)] cos(8) , (A5)

where, for a given angle 6, h is determined by (A4).
The addition of htan(f) takes the Legendre transform
of f,(T, iz) to give us fp(T,60). The physical interpreta-
tion of this transform is simply that this term subtracts
off, from f,(T, h), the energy contribution due to the cou-
pling of the field to the angle, thus leaving us with what
the free energy of a step at angle § would be in the ab-
sence of any applied field. The factor cos(f) is necessary
to give us the free energy per unit (macroscopic) step
length f, rather than the free energy per unit projected
length f,.

There are two ways in which the calculation above is
useful to us. First, for 7' < Ter and Ap = 0, the free
energy barrier per unit length for shrinking of a cubi-
cal projection of edge length L (in the large L limit) is
given rigorously by fg(T) = fp(T,iz = 0). This is also,
roughly speaking, the appropriate barrier to consider for
a coarsening surface (as discussed in Sec. III A), although
the value of fg(T) can no longer be so rigorously deter-
mined. In particular, it would depend on precisely how
we choose to define the characteristic length scale L. For
coarsening in the case Ap # 0, the important quantity
that enters into the equations is f,(T,0 = w/4), as dis-
cussed in Sec. IV.

Second, we can extend the above results to derive the
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opening angle 8.(T), discussed in Sec. IIIB, in the tem-
perature regime Tcr < T < Tgr. To determine this
angle, we consider a surface [hkl] with 0 < k < h and
0 <! < h. Such a surface is thus very close to being
a [hkO] surface and if it is unstable then (independent
of which of the conical point or ridge scenarios discussed
in Sec. IIIB is correct), it will break up (at least pri-
marily) into surfaces that are vicinal to the [100] orien-
tation and surfaces that are vicinal to the [010] orien-
tation. These surfaces will have steps across them of a
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definite angle, given by 6.(T). This opening angle is then
determined by the condition that it minimize the total
free energy of the resulting surface subject to the con-
straint that the surface has the correct average tilt in the
2 direction. The free energy of the surface is given by
fs(T,0)L,, where L, is the total length of step. The tilt
is given by Lgsin(f). Therefore, §.(T) is that angle 6
which minimizes the quantity f,(7,8)/sin(6) [61]. This
one-dimensional minimization can easily be performed
numerically. The results are shown in Fig. 7.
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FIG. 1. Decomposition of a surface in the [111] RSOS
model for the Hamiltonian of Eq. (1) at T < Tcr. Shown
is a [111] surface that has been quenched from infinite tem-
perature to T = 3J, at times (a) t = 0, (b) £ = 100, and (c)
t = 10000 (in MC steps per plaquette) following the quench.



FIG. 4. Equilibrium configurations for a [15,5,1] surface in
the [111] RSOS model at various temperatures: (a) T = 4.J3,
(b) T = 14Jz2, and (¢) T = 34J2. Minimization of the total
surface free energy, under the assumption that the surface is
close enough to being vicinal that the steps do not interact,
gives Tps([15,5,1]) ~ 22.6J for the phase separation tem-
perature (see the Appendix and Fig. 7). This estimate should
provide an upper bound for the actual value of Tps([15, 5, 1]).
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FIG. 5. The “ridge scenario.” In (a) we show a closeup
of the corner region of the ECS for Tecrx < T < Tgr, un-
der the assumption that the sharp edges between the facets
continue into the curved part of the ECS, finally terminat-
ing at second-order critical points. At any point along this
edge, there is “coexistence” between two surface orientations.
(Here sharp first-order edges are shown by dashed lines while
the second-order Pokrovsky-Talapov boundaries between the
facets and the curved part of the ECS are shown by solid lines.
The solid circles represent second-order critical points at the
end of the first-order lines.) In (b) we present the diagram
of the stable surface orientations, showing how any unstable
surface will phase separate into the two coexisting stable sur-
faces. In our example, any orientation along the dashed curve
(such as the one indicated by the open circle) decomposes into
the two (marginally) stable surface orientations indicated by
the solid circles.



FIG. 8. Equilibrium configuration for a [13,13,4] surface in
the [111] RSOS model at T = 8J,. Note that the surface
appears to have phase separated, but the equilibrium state is
quite complicated. This may be an indication that many dif-
ferent surface orientations are involved, as one would expect
from the conical point scenario.
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FIG. 9. Shrinking a cubical projection in the [111] RSOS
model. (a) Cubical projection with L = 4. (b) Same projec-
tion once one face has been removed. For Ap > 0, this con-
figuration is lower in energy than that of (a) by 4J2 + AuL*.



